A New N-Carboxyindole Alkaloid from the Marine Sponge Rhaphisia pallida

Jingyu Su,*,† Yongli Zhong,† Longmei Zeng,† Houming Wu,‡ Xiaoyu Shen,‡ and Kan Ma‡

Department of Chemistry, Zhongshan University, Guangzhou, China 510275, and State Key Laboratory of Bio-organic and Natural Products Chemistry, Shanghai, China 200032

Received September 28, 1995[®]

A new indole alkaloid pallidin (1), together with the two known compounds, cyclo(L-pro-L-leu) and 1,3-dimethylxanthine, were isolated from the sponge *Rhaphisia pallida*. The structures of these metabolites were defined by spectroscopic methods.

Substituted diketopiperazine derivatives of several naturally occurring indole alkaloids have been isolated and have exhibited interesting biological activities.¹ For example, barettin, isolated from the marine sponge *Geodia baretti*,² showed inhibiting activity on electrically induced contractions of an isolated Guinea pig ileum, and austamide was one of the toxic principles of moldy maize meal.³ In a study of the sponge *Rhaphisia* pallida Ridley (Halichondriidae), we have isolated the new alkaloid pallidin (1), a member of the rare structural class of N-carboxyindole alkaloids. Indole-3carboxylic acid derivatives have been known from red algae^{4,5} and brown algae.⁶ So far, there is no example of a naturally occurring N-carboxyindole alkaloid. However, L-carboxyindole itself and some derivatives have been prepared.^{7,8} Pallidin is the first isolation of an N-carboxyindole alkaloid from a natural source. Two known compounds, cyclo(L-pro-L-leu) and 1,3-dimethylxanthine, were also obtained from this species.

The ethanol extract of *R. pallida* yielded pallidin (1), cyclo(L-pro-L-leu), and 1,3-dimethylxanthine by vacuum and flash chromatography.

The ¹³C-NMR and FABMS (MH⁺, m/z 372) of pallidin (1) supported the molecular formula C₂₀H₂₅N₃O₄ (mol wt 371). The pattern of ¹H-NMR signals in the aromatic proton region indicated an indole moiety, and the four signals at δ 7.34, 7.41, 7.63, and 8.86 ppm were attributed to the four neighboring aromatic protons. The ¹³C-NMR signal at 166.2 ppm and an IR absorption at 1700 cm⁻¹ established the presence of a COOH group. A typical *N*-carboxyindole UV absorption strongly supported this determination.⁹ The ¹³C NMR signal at 131.2 (d) ppm was assigned to C-2 of indole; thus, a part of the structure of **1** must be an *N*-carboxyindole with a substituent at C-3.

The mass spectrum of **1** (Figure 1) gave two important fragments A and B at m/z 161 and m/z 211, respectively, which obviously originated via cleavage of the

Figure 1. MS fragment ions of **1** (m/z).

Figure 2. Key HMBC correlations for 1.

 C_3-C_9 bond. Fragment A at m/z 161 represents the *N*-carboxyindole moiety. It lost OH or COOH to display an [A – OH] ion at m/z 144 and an [A – COOH] ion at m/z 116, respectively. This confirmed that the carboxyl group must be located at the N-1 position. In addition, the position of the carboxyl group was unambiguously confirmed by the HMBC spectrum (Figure 2).

The remaining part of the structure was a diketopiperazine system. IR data for **1** showed NH bands at 3393 and 3310 cm⁻¹ and amide carbonyl bands near 1690 and 1644 cm⁻¹ (amide I), which together with the absence of an amide II band clearly suggested the existence of a diketopiperazine system.^{2,3} The ¹H-NMR spectrum showed an exchangeable signal at δ 8.37 ppm which was assigned to two NH protons.

The interpretation of the ${}^{1}H{-}^{1}H$ COSY and ${}^{1}H{-}^{13}C$ COSY NMR spectra established the presence of the following three subunits: -HC=CHCH=CH-, $-CH_2-CH_2CH_2CH(N)-$, and $-CH(N)CH(CH_3)CH_2(CH_3)$. The connectivities of these subunits were deduced by analyzing the cross-peaks observed in the HMBC spectrum and by comparing the NMR data with those of the known compound austamide.³

In the MS of **1**, fragment B at m/z 211 (94%) represented the diketopiperazine system. It lost a CH₂ unit to give a conspicuous peak at m/z 197 and further lost two CH₂ to give m/z 169. The latter lost CH₃ to give a prominent peak at m/z 154 (Figure 1), which suggested that the second part of the structure must be a dipeptide moiety, cyclo(norvaline-isoleucine).

[†] Department of Chemistry.

[‡] State Key Laboratory. [®] Abstract published in Advance ACS Abstracts, April 1, 1996.

Figure 3. Expression of major NOESY correlation in 1.

NOESY experiments (Figure 3) were employed to assign the relative configuration for **1**. These suggested the relative configuration of C-12 and C-15 should be the same as those reported for prolyl-2-(1',1'-dimethyl-allyl)tryptophyldiketopiperazine.³ However, the configuration of C-18 could not be assigned.

The ¹H- and ¹³C-NMR chemical shifts and the IR and mass spectrum of compound **2** revealed that it is a cyclodipeptide. Comparison of its spectral data with those reported in the literature,¹⁰ identified compound **2** as cyclo(L-pro-L-leu). This compound had previously been isolated from fungi¹¹ and plants.¹²

The mp and UV, ¹H- and ¹³C-NMR, and mass spectral data of compound **3** were consistent with those of 1,3-dimethylxanthine.¹³

Experimental Section

General Experimental Procedures. Mps were determined on a X_4 apparatus and are uncorrected. Optical rotations were measured with a Perkin-Elmer 241 polarimeter. ¹H and ¹³C NMR spectra were recorded on a Bruker AMX-600 instrument (for compound 1) and Jeol FX-90Q instrument (for compounds 2 and 3). A Nicolet 5DX FT-IR spectrometer and a Perkin-Elmer 240C automatic elemental analyzer were used. Mass spectra were measured with a ZAB-HF-3F mass spectrometer. Preparative HPLC was carried out by using a μ -Porasil SiO₂ column with UV detection.

Extraction and Isolation. The sponge *R. pallida* was collected off the Bay of Lingshui, Hainan Island, at a depth of 3-5 m. The voucher specimen (no. 93-9) is preserved in the Research Centre of Organic Natural Products, Zhongshan University.

The sun-dried specimen (1.3 kg) was immersed in EtOH at rt. The combined extracts were evaporated *in vacuo*. The residue was partitioned between EtOAc- H_2O three times. The combined EtOAc extracts (5.7 g) were chromatographed on Si gel, eluting with EtOAc-petroleum ether with gradually increasing amounts of EtOAc.

The fraction eluted with 65% EtOAc in petroleum ether was further subjected to flash chromatography on high performance silica, eluting with increasing amounts of MeOH in CH₂Cl₂. The fraction eluted with 3% MeOH–CH₂Cl₂ gave crude cyclo(L-pro-L-leu) (60 mg), which was further purified by crystallization from Me₂-CO–petroleum ether (1:1) to give hexagonal crystals. The fraction eluted with 6% MeOH–CH₂Cl₂ yield a solid. It was subjected to preparative TLC, using Me₂-CO–petroleum ether–glacial HOAc (2:3:0.03) as solvents, and then was purified by recrystallization from MeOH to afford colorless crystals of **1** (15 mg).

The fraction eluted with 80% EtOAc in petroleum ether was further separated by high performance silica flash chromatography, eluting with $CHCl_3-n$ -BuOH (85:

15) to give a colorless solid. The solid was purified by HPLC (μ -Porasil SiO₂ column, UV detector, at 271 nm) using glyme–*n*-hexane (1:1) as eluent to yield colorless needles of 1,3-dimethylxanthine (10 mg).

Pallidin (1) was obtained as colorless crystals (MeOH): mp 124–125 °C; $[\alpha]^{25}_{D}$ –52.4° (c 0.040, MeOH); UV (EtOH) λ max nm (log ϵ) 281 (3.90), 272 (3.88), 252 (4.08), 228 (4.11), 212 (4.49); IR (KBr) v max3393 (NH), 3310 (NH), 2913, 2870, 1700 (C=O, acid), 1690 (C=O, amide), 1644 (C=O, amide), 1581, 1525, 1447, 1307, 1194, 1032, 751 cm⁻¹; ¹H NMR (pyridine d_5 , 600 MHz) δ 12.96 (1 H, s, H-8), 8.86 (1 H, d, J = 7.5Hz H-7), 8.73 (2 H, s, exchangeable, NH), 8.50 (1 H, d, J = 2.6 Hz, H-2), 7.63 (1 H, d, J = 7.6 Hz, H-4), 7.41 (1 H, t, J = 7.5 Hz, H-5), 7.34 (1 H, t, J = 7.6 Hz, H-6), 4.16 (1 H, dd, J = 8.3 and 7.8 Hz, H-12), 4.11 (1 H, d, J = 2.9 Hz, H-15), 3.61 (1 H, dt, J = 11.4 and 8.0 Hz, H-9a), 3.45 (1 H, ddd, J = 11.4, 8.5, 3.2 Hz, H-9b), 2.45 (1 H, m, H-18), 2.27 (1 H, m, H-11a), 2.11 (1 H, m, H-11b), 1.73 (1 H, m, H-19a), 1.69 (1 H, m, H-10a), 1.61 (1 H, m, H-10b), 1.54 (1 H, m, H-19b), 1.20 (3 H, d, J =7.1 Hz, H-21), 0.92 (3 H, t, J = 7.3 Hz, H-20); ¹³C NMR (pyridine-*d*₅, 125.8 MHz) δ 169.1 (s, C-17), 166.2 (d, C-8), 164.3 (s, C-14), 136.2 (s, C-7a), 131.2 (d, C-2), 126.0 (s, C-3a), 121.5 (d, C-6), 102.5 (d, C-5 and C-7), 111.0 (d, C-4), 108.2 (s, C-3), 58.9 (d, C-15), 57.6 (d, C-12), 43.7 (t, C-9), 34.5 (d, C-18), 27.2 (t, C-11), 23.2 (t, C-19), 21.1 (t, C-10), 13.9 (q, C-21), 10.9 (q, C-20); EIMS (70 eV) *m*/*z* [M]⁺ 371, 211 (93), 197 (13), 181, 169, 161 (29), 154 (100), 144 (8), 116 (9), 107 (27), 77 (30), 69 (25).

Cyclo(L-pro-L-leu) was obtained as colorless hexagonal crystals (MeOH); mp 160–162 °C; IR (KBr) ν max 3261, 2952, 2875, 1668, 1638, 1471, 1432, 1300, 1158, 1130, 917, 709, 668, 641 cm⁻¹; ¹H-NMR (CDCl₃) δ 4.12 (1 H, t, H-2), 2.35 and 2.14 (2 H, m, H-3), 2.03 and 1.90 (2 H, m, H-4), 3.57 and 3.54 (2 H, ddt H-5), 4.02 (1 H, dd, H-2'), 2.06 and 1.53 (2 H, m, H-3'), 1.75 (1 H, m, H-4'), 1.01 (3 H, d, H-5'), 0.96 (3 H, d, H-6'); ¹³C-NMR (CDCl₃) δ 170.2 (s, C-1), 59.0 (d, C-2), 28.1 (t, C-3), 23.2 (t, C-4), 45.5 (t, C-5), 166.2 (s, C-1'), 53.4 (d, C-2'), 28.1 (t, C-3'), 24.7 (d, C-4'), 22.7 (q, C-5'), 21.2 (q, C-6'); EIMS m/z [M]⁺ 210 (2.5), 209 (1.2), 195 (10.1), 167 (17.3), 154 (100), 139 (18.0), 125 (39.7), 112 (5.0), 96 (20.3), 86 (90.0), 70 (99.4), 55 (52.2).

1,3-Dimethylxanthine was obtained as colorless needles (pyridine–MeOH 1:5): mp 251–252 °C; UV (MeOH) λ max (log ϵ) 271 (3.95), 208 (4.16); ¹H-NMR (CDCl₃) δ 8.24 (1 H), 3.52 (3 H) ppm; ¹³C-NMR δ 154.8 (s, C-2), 151.4 (s, C-4), 107.3 (s, C-4a), 139.8 (d, C-6), 148.1 (s, C-7a), 29.4 (q, C-1), 27.4 (q, C-3); EIMS m/z [M]⁺ 180, 165 (74), 14 (10), 132 (14), 114 (89), 92 (100), 70 (71), 58 (79).

Acknowledgment. We are grateful to the National Natural Science Foundation of China for financial support and to Dr. Jinho Li for identification of the sponge.

References and Notes

- Kobayashi, J.; Ishibashi, M. In *The Alkaloids*; Brossi, A., Cordell, G. A., Eds.; Academic Press: San Diego, 1992; Vol. 41, pp 41– 42.
- (2) Lidgren, G.; Bohlin, L.; Berigman, J. *Tetrahedron Lett.* **1986**, *27*, 3283–3284.
- (3) Steyn, P. S. Tetrahedron 1973, 29, 107-120.

- (4) Bernart, M.; Gerwick, W. H. Phytochemistry 1990, 29, 3697-3698.
- (5) Bano, S.; Ahmad, V. U.; Perveen, S.; Shafiuddin, N. B.; Shameel, M. *Planta Med.* **1987**, *53*, 117–118.
 (6) Abe, H.; Uchiyama, M.; Sato, R. *Agric. Biol. Chem.* **1972**, *36*, and a concernent and a concernent set of the se
- 2259-2260.
- (7) Bogar, D. L.; Patel, M. J. Org. Chem. 1987, 52, 3934–3936.
 (8) Katritzky, A. R.; Akutagawa, K. J. Am. Chem. Soc. 1986, 108,
- 6808-6809.
- (9) Kasparek, S.; Heacock, R. A. Can. J. Chem. 1967, 45, 771-773.

- (13) Osterman, R. M.; McKittrick, B. A.; Chan, T. M. Tetrahedron Lett. 1992, 33, 4867-4870.

NP9600917